本课程侧重于电子表格建模,以支持服务行业组织的决策制定,如医疗保健、银行、分销和教育。学生培养批判性思维和解决问题的能力,以解决现实世界的问题。所获得的电子表格建模功能对管理人员和管理员来说非常实用。课程主题涵盖显示图表、数据探索。决策逻辑,参考功能,贷款和投资的财务影响,项目管理,假设分析,目标寻求。Visual basic编程等高级工具。
本课程通过开发商业智能解决方案来讨论商业分析的过程,包括问题定义、数据准备、描述性和预测性分析、结果评估、实施和部署。在业务事务捕获、数据聚合和在线分析处理(OLAP)中,强调使用电子表格和结构化查询语言(SQL)的面向数据的方法。学生将在数据仓库的开发中使用各种软件工具,包括ETL(提取、转换和加载)和可视化数据表示(如数据立方体)。
新颖的问题需要创新的解决方案——本课程向学生介绍编程和脚本语言(如R和Python)的强大功能和灵活性,并将其应用于商业分析问题。学生将学习如何获取和部署与他们的问题相关的软件包,然后将它们与SQL等工具一起使用,以收集和准备数据,根据特定需求定制分析,并创建有效传达结果的输出。
本课程向学生介绍社交媒体分析的概念和用于分析社交媒体数据(如文本,网络和动作)的技术。学生将学习如何从流行的社交媒体平台中提取数据,并使用R等软件工具分析这些数据,以识别趋势、情绪、意见领袖和社区。
本课程向学生介绍数据可视化和仪表板。学生将学习数据可视化的最佳实践,使用结构化查询语言(SQL)进行数据检索,提高分析技能,并学习如何设计仪表板以支持管理决策。学生将有机会获得数据检索和可视化方面的实践经验。学生将使用Tableau作为数据可视化和仪表板的主要工具,但将开发可应用于该领域大多数常见软件包的可转移技能。
本课程为学生提供各种管理决策分析技术的知识和技能,包括大数据分析。将涵盖许多定义良好的数据挖掘技术,如分类、估计、预测、亲和分组和聚类以及数据可视化。数据挖掘跨行业标准流程(CRISP-DM)也将被讨论。数据挖掘技术将应用于不同的商业应用,包括:目标营销、信用风险管理、信用评分、欺诈检测、医疗信息、电信和网络分析。
本课程向学生介绍企业数据资源的管理和协调,以提高整个企业的决策能力。学生将学习如何从企业数据中识别关键绩效指标,如何区分企业分析与其他形式的分析,如何确定哪些专有数据将提供分析优势,以最大限度地提高对企业的影响,最新的分析技术和最新案例的最佳实践。学生将参与一个反复的过程,从组织内的多个功能领域探索数据,以获得可操作的见解,并交流发现,以帮助企业提高决策质量。
本课程使学生全面了解组织环境中与信息安全和信息保障相关的问题和解决方案。学生学习如何对现场安全与保障、硬件与软件可靠性与风险、网络可靠性与安全进行定量和定性的安全风险评估分析。学生将进行数据收集和分析方法,以解决预期的故障、攻击的发生率和严重程度、事故和自然行为,以及它们对运营和预算的影响。
介绍统计方法,包括概率概念,推理技术,方差分析,回归分析,卡方和其他非参数分析。本课程侧重于使用计算机进行统计分析。*没有统计学背景的学生建议选修QUMT 6303
本课程向学生介绍现代机器学习方法,这些方法可以应用于建立预测模型和发现数据中的模式,以便更好地进行商业决策。学生将学习在R编程语言中实现机器学习技术,以理解复杂的数据集。本课程将使学生能够通过识别从数据驱动的商业智能中获得商业价值的机会来解决商业问题。先决条件:QUMT 6303或QUMT 3341或同等学历。
本课程介绍规范分析的原理和技术。这些工具为业务实体和政策制定者提供了评估绩效、制定决策、设计策略和管理风险的合理工具。学生将学习如何使用分析模型来评估在许多商业决策中普遍存在的不确定性。由于商业问题通常有不同的解决方案,学生将学习如何使用分析模型来评估各种商业解决方案,并确定最佳的行动方案。本课程涉及电子表格建模和其他分析包的实践学习经验。重点是如何运用这些分析方法来促进不同行业和职能领域的管理决策。